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1. Introduction (Grad, Div, Curl)
The vector differential operator ∇ , called “del” or “nabla”, is defined
in three dimensions to be:

∇ =
∂

∂x
i +

∂

∂y
j +

∂

∂z
k

The result of applying this vector operator to a scalar field is called
the gradient of the scalar field:

gradf(x, y, z) = ∇f(x, y, z) =
∂f

∂x
i +

∂f

∂y
j +

∂f

∂z
k .

(See the package on Gradients and Directional Derivatives.)

The scalar product of this vector operator with a vector field F (x, y, z)
is called the divergence of the vector field:

divF (x, y, z) = ∇ · F =
∂F1

∂x
+

∂F2

∂y
+

∂F3

∂z
.
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The vector product of the vector ∇ with a vector field F (x, y, z) is the
curl of the vector field. It is written as curlF (x, y, z) = ∇× F

∇× F (x, y, z) = (
∂F3

∂y
− ∂F2

∂z
)i− (

∂F3

∂x
− ∂F1

∂z
)j + (

∂F2

∂x
− ∂F1

∂y
)k

=

∣∣∣∣∣∣∣
i j k
∂

∂x

∂

∂y

∂

∂z
F1 F2 F3

∣∣∣∣∣∣∣ ,

where the last line is a formal representation of the line above. (See
also the package on Divergence and Curl.)

Here are some revision exercises.

Exercise 1. For f = x2y − z and F = xi− xyj + z2k calculate the
following (click on the green letters for the solutions).

(a) ∇f (b) ∇ · F

(c) ∇× F (d) ∇f −∇× F
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2. The Laplacian
The Laplacian operator is defined as:

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
.

The Laplacian is a scalar operator. If it is applied to a scalar field, it
generates a scalar field.

Example 1 The Laplacian of the scalar field f(x, y, z) = xy2 + z3 is:

∇2f(x, y, z) =
∂2f

∂x2
+

∂2f

∂y2
+

∂2f

∂z2

=
∂2

∂x2
(xy2 + z3) +

∂2

∂y2
(xy2 + z3) +

∂2

∂z2
(xy2 + z3)

=
∂

∂x
(y2 + 0) +

∂

∂y
(2xy + 0) +

∂

∂z
(0 + 3z2)

= 0 + 2x + 6z = 2x + 6z
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Exercise 2. Calculate the Laplacian of the following scalar fields:
(click on the green letters for the solutions).
(a) f(x, y, z) = 3x3y2z3 (b) f(x, y, z) =

√
xz + y

(c) f(x, y, z) =
√

x2 + y2 + z2 (d) f(x, y, z) =
1√

x2 + y2 + z2

Quiz Choose the Laplacian of f(r) =
1
rn

where r =
√

x2 + y2 + z2.

(a) − 1
rn+2

(b)
n

rn+2

(c)
n(n− 1)

rn+2
(d)

n(n + 5)
rn+2

The equation ∇2f = 0 is called Laplace’s equation. This is an impor-
tant equation in science. From the above exercises and quiz we see

that f =
1
r

is a solution of Laplace’s equation except at r = 0.
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The Laplacian of a scalar field can also be written as follows:

∇2f = ∇ ·∇f

i.e., as the divergence of the gradient of f . To see this consider

∇ ·∇f = ∇ · (∂f

∂x
i +

∂f

∂y
j +

∂f

∂z
k)

=
∂

∂x
(
∂f

∂x
) +

∂

∂y
(
∂f

∂y
) +

∂

∂z
(
∂f

∂z
)

=
∂2f

∂x2
+

∂2f

∂y2
+

∂2f

∂z2
= ∇2f

Exercise 3. Find the Laplacian of the scalar fields f whose gradients
∇f are given below (click on the green letters for the solutions).

(a) ∇f = 2xzi + x2k (b) ∇f =
1
yz

i− x

y2z
j − x

yz2
k

(c) ∇f = ezi + yj + xezk (d) ∇f =
1
x

i +
1
y
j +

1
z
k
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3. The Laplacian of a Product of Fields
If a field may be written as a product of two functions, then:

∇2(uv) = (∇2u)v + u∇2v + 2(∇u) · (∇v)

A proof of this is given at the end of this section.
Example 2 The Laplacian of f(x, y, z) = (x + y + z)(x− 2z) may be
directly calculated from the above rule

∇2f(x, y, z) = (∇2(x + y + z))(x− 2z) + (x + y + z)∇2(x− 2z)
+2∇(x + y + z) ·∇(x− 2z)

Now ∇2(x + y + z) = 0 and ∇2(x − 2z) = 0 so the first line on the
right hand side vanishes.
To calculate the second line we note that

∇(x+y+z) =
∂(x + y + z)

∂x
i+

∂(x + y + z)
∂y

j+
∂(x + y + z)

∂z
k = i+j+k
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and

∇(x− 2z) =
∂(x− 2z)

∂x
i +

∂(x− 2z)
∂y

j +
∂(x− 2z)

∂z
k = i− 2k

and taking their scalar product we obtain

∇2f(x, y, z) = 0 + 2∇(x + y + z) ·∇(x− 2z)
= 2(i + j + k) · (i− 2k) = 2(1 + 0− 2)
= −2.

This example may be checked by expanding (x + y + z)(x− 2z) and
directly calculating the Laplacian.

Exercise 4. Use this rule to calculate the Laplacian of the scalar
fields given below (click on the green letters for the solutions).

(a) (2x− 5y + z)(x− 3y + z) (b) (x2 − y)(x + z)

(c) (y − z)(x2 + y2 + z2) (d) x
√

x2 + y2 + z2
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Proof that ∇2(uv) = (∇2u)v + u∇2v + 2(∇u) · (∇v) .

By definition ∇2(uv) =
∂2

∂x2
(uv) +

∂2

∂y2
(uv) +

∂2

∂z2
(uv) . Consider

therefore:
∂2

∂x2
(uv) =

∂

∂x

(
∂

∂x
(uv)

)
=

∂

∂x

(
∂u

∂x
v + u

∂v

∂x

)
=

∂2u

∂x2
v +

∂u

∂x

∂v

∂x
+

∂u

∂x

∂v

∂x
+ u

∂2v

∂x2

=
∂2u

∂x2
v + 2

∂u

∂x

∂v

∂x
+ u

∂2v

∂x2

where the product rule was repeatedly used.

By symmetry we also have:
∂2

∂y2
(uv) =

∂2u

∂y2
v + 2

∂u

∂y

∂v

∂y
+ u

∂2v

∂y2
and

∂2

∂z2
(uv) =

∂2u

∂z2
v + 2

∂u

∂z

∂v

∂z
+ u

∂2v

∂z2
. Adding these results yields the

desired result.
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4. The Laplacian and Vector Fields
If the scalar Laplacian operator is applied to a vector field, it acts on
each component in turn and generates a vector field.

Example 3 The Laplacian of F (x, y, z) = 3z2i + xyzj + x2z2k is:

∇2F (x, y, z) = ∇2(3z2)i + ∇2(xyz)j + ∇2(x2z2)k

Calculating the components in turn we find:

∇2(3z2) =
∂2

∂x2
(3z2) +

∂2

∂y2
(3z2) +

∂2

∂z2
(3z2) = 0 + 0 + 6 = 6

∇2(xyz) =
∂2

∂x2
(xyz) +

∂2

∂y2
(xyz) +

∂2

∂z2
(xyz) = 0 + 0 + 0 = 0

∇2(x2z2) =
∂2

∂x2
(x2z2) +

∂2

∂y2
(x2z2) +

∂2

∂z2
(x2z2) = 2z2 + 0 + 2x2

So the Laplacian of F is:

∇2F = 6i + 0j + (2z2 + 2x2)k = 6i + 2(x2 + z2)k
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Quiz Select from the answers below the Laplacian of the vector field
F = x3yi + ln(z)j + ln(xy)k .

(a) 6xyi (b) 6xyi− 1
z2

j − x2 + y2

x2y2
k

(c) 3xi +
1
z2

j −
(

1
x2
− 1

y2

)
k (d) y3i + x2j − y2 − x2

z2
k

Quiz Choose the Laplacian of F = 3x2zi− sin(πy)j +ln(2x3)k at the
point (1,−2, 1)?

(a) 0 (b) 6i− 3k (c) 3i− 3k (d) 6i− π2j − 6k

Quiz Which of the following choices is the Laplacian of the vector field
F = ln(y)i + z2j − sin(2πx)k at (1, 1, π)?

(a) −i + 2j (b) 0 (c) 4j + 4π2k (d) −i + j + k
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5. Final Quiz
Begin Quiz Choose the solutions from the options given.

1. Choose the Laplacian of f(r) = 5x3y4z2.

(a) 30xy4z2 +60x3y2z2 +10x3y4 (b) 30x + 20y2 + 10

(c) 30xy4z2 +75x3y2z2 +15x3y4 (d) 30xy4z2 +12x3y2z2 +15x3y4

2. Choose the Laplacian of f(x, y, z) = ln(r) where r =
√

x2 + y2 + z2.

(a) 0 (b)
2
r2

(c)
1

2r2
(d)

1
r2

3. Select the Laplacian of F = x3i + 7yj − 3 sin(2y)k.

(a) 6xi (b) 6xi + 12 sin(2y)k
(c) 6xi + 3 sin(2y)k (d) 6xi− 12 sin(2y)k

End Quiz
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Solutions to Exercises
Exercise 1(a)
To find the gradient of the scalar field f = x2y − z, we need the
partial derivatives:

∂f

∂x
=

∂

∂x
(x2y − z) = 2x2−1 × y = 2xy ,

∂f

∂y
=

∂

∂y
(x2y − z) = x2 × y1−1 = x2 ,

∂f

∂z
=

∂

∂z
(x2y − z) = 0− z1−1 = −1 .

Therefore the gradient of f = x2y − z is

∇f(x, y, z) =
∂f

∂x
i +

∂f

∂y
j +

∂f

∂z
k

= 2xyi + x2j − k .

Click on the green square to return
�
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Exercise 1(b)
To find the divergence of the vector field F = xi − xyj + z2k, we
recognise that its components are

F1 = x , F2 = −xy , F3 = z2 ,

So the divergence is the scalar expression

∇ · F =
∂F1

∂x
+

∂F2

∂y
+

∂F3

∂z

=
∂

∂x
(x) +

∂

∂y
(−xy) +

∂

∂z
(z2)

= x1−1 − x× y1−1 + 2× z2−1

= 1− x + 2z .

Click on the green square to return
�
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Exercise 1(c)
The curl of the vector field F whose components are

F1 = x , F2 = −xy , F3 = z2 ,

is given by the vector expression:

∇× F =
(

∂F3

∂y
− ∂F2

∂z

)
i−

(
∂F3

∂x
− ∂F1

∂z

)
j +

(
∂F2

∂x
− ∂F1

∂y

)
k

=
(

∂

∂y
(z2)− ∂

∂z
(−xy)

)
i−

(
∂

∂x
(z2)− ∂

∂z
(x)

)
j

+
(

∂

∂x
(−xy)− ∂

∂y
(x)

)
k

= (0 + 0) i− (0− 0) j + (−y − 0) k

= −yk .

Click on the green square to return �
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Exercise 1(d)
To subtract the curl of the vector F = xi−xyj+z2k from the gradient
of the scalar field f = x2y − z

∇f −∇× F .

we use the results of Exercise 1a and Exercise 1c, where it was found
that

∇f = 2xyi + x2j − k and ∇× F = −yk .

Therefore the difference of these two vectors is

∇f −∇× F = 2xyi + x2j − k − (−y)k
= 2xyi + x2j − (1− y)k .

Click on the green square to return �
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Exercise 2(a)
The Laplacian of the scalar field f = 3x3y2z3 is:

∇2f =
∂2f

∂x2
+

∂2f

∂y2
+

∂2f

∂z2

=
∂2

∂x2
(3x3y2z3) +

∂2

∂y2
(3x3y2z3) +

∂2

∂z2
(3x3y2z3)

=
∂

∂x
(9x2y2z3) +

∂

∂y
(6x3yz3) +

∂

∂z
(9x3y2z2)

= 18xy2z3 + 6x3z3 + 18x3y2z .

Extracting common factors, the scalar ∇2f can also be written as

∇2f = 6xz
(
3y2z2 + x2z2 + 3x2y2

)
= 6xz

(
3y2(z2 + x2) + x2z2

)
.

Click on the green square to return
�
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Exercise 2(b)
The Laplacian of the scalar field f =

√
xz + y = x1/2z1/2 + y is:

∇2f =
∂2

∂x2

(
x

1
2 z

1
2 + y

)
+

∂2

∂y2

(
x

1
2 z

1
2 + y

)
+

∂2

∂z2

(
x

1
2 z

1
2 + y

)
=

∂

∂x

(
1
2
x( 1

2−1)z
1
2

)
+

∂

∂y
(1) +

∂

∂z

(
1
2
x

1
2 z( 1

2−1)

)
=

∂

∂x

(
1
2
x−

1
2 z

1
2

)
+ 0 +

∂

∂z

(
1
2
x

1
2 z−

1
2

)
=

1
2
(−1

2
)x(− 1

2−1)z
1
2 +

1
2
(−1

2
)x

1
2 z(− 1

2−1)

= −1
4
x−

3
2 z

1
2 − 1

4
x

1
2 z−

3
2 .

This result may be rewritten as

∇2f = −1
4
x

1
2 z

1
2

(
x−2 + z−2

)
= −1

4
√

xz

(
1
x2

+
1
z2

)
.

Click on the green square to return �
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Exercise 2(c) To calculate ∇2
√

x2 + y2 + z2 , define u = x2+y2+z2,
so f = u1/2. From the chain rule we have

∂f

∂x
=

∂u
1
2

∂u
× ∂u

∂x
=

1
2
u( 1

2−1) × 2x = xu−
1
2 .

Therefore the second derivative is (from the product and chain rules):

∂2f

∂x2
=

∂

∂x
(x)× u−

1
2 + x× ∂u−

1
2

∂u
× ∂u

∂x
= u−

1
2 − x2u−

3
2 .

Since f and u are symmetric in x, y and z we have

∂2f

∂y2
= u−

1
2 − y2u−

3
2 and

∂2f

∂z2
= u−

1
2 − z2u−

3
2 .

Adding these results and using x2 + y2 + z2 = u yields

∇2f =
(
u−

1
2 − x2u−

3
2

)
+

(
u−

1
2 − y2u−

3
2

)
+

(
u−

1
2 − z2u−

3
2

)
= 3u−

1
2 − (x2 + y2 + z2)u−

3
2 = 2u−

1
2 =

2√
x2 + y2 + z2

.

Click on the green square to return
�
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Exercise 2(d) To find the Laplacian of f = (x2 + y2 + z2)−
1
2 , we

again define u = x2 + y2 + z2. From the chain rule

∂f

∂x
=

∂u−
1
2

∂u
× ∂u

∂x
= −1

2
u(− 1

2−1) × 2x = −xu−
3
2 .

Thus the second order derivative is:
∂2f

∂x2
= − ∂

∂x
(x)× u−

3
2 − x× ∂u−

3
2

∂u
× ∂u

∂x
= −u−

3
2 + 3x2u−

5
2 .

Due to the symmetry under interchange of x, y and z :

∂2f

∂y2
= −u−

3
2 + 3y2u−

5
2 ,

∂2f

∂z2
= −u−

3
2 + 3z2u−

5
2 .

Therefore we find that the Laplacian of f vanishes:

∇2f =
(
−u−

3
2 + 3x2u−

5
2

)
+

(
−u−

3
2 + y2u−

5
2

)
+

(
−u−

3
2 + 3z2u−

5
2

)
= −3u−

3
2 + 3(x2 + y2 + z2)u−

5
2 = −3u−

3
2 + 3u−

3
2 = 0 .

Click on the green square to return �
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Exercise 3(a)
If the gradient of the scalar function f is ∇f = 2xzi + x2k, then the
Laplacian of f is given by the divergence of this vector

∇2f = div (∇f) .

Therefore the Laplacian of f is

∇2f = div
(
2xzi + x2k

)
=

∂

∂x
(2xz) +

∂

∂y
(0) +

∂

∂z
(x2)

= 2z + 0 + 0
= 2z .

Click on the green square to return
�
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Exercise 3(b)

If a scalar field f has gradient ∇f =
1
yz

i− x

y2z
j− x

yz2
k , its Laplacian

is given by the divergence

∇2f = div (∇f) .

Using this formula we can find ∇2f as follows

∇2f = div
(

1
yz

i− x

y2z
j − x

yz2
k

)
=

∂

∂x

(
1
yz

)
+

∂

∂y

(
− x

y2z

)
+

∂

∂z

(
− x

yz2

)
= (0)− (−2)× x

y3z
− (−2)× x

yz3

= 2x
y2 + z2

y3z3
.

Click on the green square to return
�



Solutions to Exercises 24

Exercise 3(c)
As above if the gradient of f is

∇f = ezi + yj + xezk

its Laplacian is the scalar divergence of the vector ∇f :

∇2f = div (∇f) .

Therefore

∇2f = div (ezi + yj + xezk)

=
∂

∂x
(ez) +

∂

∂y
(y) +

∂

∂z
(xez)

= (0) + 1 + xez

= 1 + xez .

Click on the green square to return �
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Exercise 3(d)

If ∇f =
1
x

i +
1
y
j +

1
z
k , then the Laplacian of f is the divergence of

the gradient of f :
∇2f = div (∇f) .

Therefore

∇2f = div
(

1
x

i +
1
y
j +

1
z
k

)
=

∂

∂x

(
1
x

)
+

∂

∂y

(
1
y

)
+

∂

∂z

(
1
z

)
= − 1

x2
− 1

y2
− 1

z2
.

This may also be written as follows

∇2f = −x2y2 + z2x2 + y2z2

x2y2z2
.

Click on the green square to return �
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Exercise 4(a)
To find the Laplacian of f = (2x− 5y + z)(x− 3y + z), we use

∇2(uv) = (∇2u)v + u∇2v + 2(∇u) · (∇v)

with u = 2x− 5y + z and v = x− 3y + z. This implies

∇u = 2i− 5j + k

∇v = i− 3j + k

and so
∇2u = ∇2v = 0

The above rule therefore gives:

∇2f = 2∇u ·∇v = 0 + 0 + 2(2i− 5j + k) · (i− 3j + k)
= 2(2 + 15 + 1)
= 36 .

Click on the green square to return
�
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Exercise 4(b)
To find the Laplacian of f = (x2 − y)(x + z), we use

∇2(uv) = (∇2u)v + u∇2v + 2(∇u) · (∇v)

with u = x2 − y and v = x + z. This implies

∇u = 2xi− j

∇v = i + k

and so

∇2u = ∇ · 2xi =
∂(2x)
∂x

= 2 and ∇2v = 0

The above rule therefore gives:

∇2f = 2(x + z) + 0 + 2(2i− j) · (i + k)
= 2(x + z) + 2(2)
= 2(x + z + 2) .

Click on the green square to return �
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Exercise 4(c)
To find the Laplacian of f = (y − z)(x2 + y2 + z2), we use

∇2(uv) = (∇2u)v + u∇2v + 2(∇u) · (∇v)

with u = y − z and v = x2 + y2 + z2. This implies

∇u = j − k and ∇2u = 0

while

∇v = 2xi + 2yj + 2zk

∇2u = 2 + 2 + 2 = 6

The above rule therefore gives:

∇2f = 0 + (y − z)× 6 + 2(j − k) · (2i + 2j + 2k)
= 6 + 2(0 + 2− 2)
= 6 .

Click on the green square to return �
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Exercise 4(d) To find the Laplacian of f = x
√

x2 + y2 + z2, we
use

∇2(uv) = (∇2u)v + u∇2v + 2(∇u) · (∇v)

with u = x and v =
√

x2 + y2 + z2. Therefore ∇u = i and ∇2u = 0 .

In Exercise 2(c) we saw ∇2v = −2/
√

x2 + y2 + z2. To find ∇v use

the chain rule:
∂

∂x
(x2 + y2 + z2)−

1
2 = 2x× (− 1

2 )× (x2 + y2 + z2)−
3
2

and similarly for the other partial derivatives. Thus

∇v = − 1
(x2 + y2 + z2)

3
2
(xi + yj + zk)

The above rule therefore gives:

∇2f = 0 + x× −2√
x2 + y2 + z2

+ 2i · −1
(x2 + y2 + z2)

3
2
(xi + yj + zk)

= − 2x√
x2 + y2 + z2

− 2x2

(x2 + y2 + z2)
3
2

.

Click on the green square to return �
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Solutions to Quizzes
Solution to Quiz: The first and the second order partial derivatives
of f = r−n , r = (x2 + y2 + z2)

1
2 with respect to the variable x read:

∂f

∂x
=

∂r−n

∂r
× ∂r

∂x
= −nr−n−1 × x

r
= −n

x

rn+2
.

∂2f

∂x2
= −n

1
rn+2

∂x

∂x
− xn× ∂

∂r

(
1

rn+2

)
× ∂r

∂x

= −n
1

rn+2
+ n(n + 2)

x2

rn+4
.

Due to the symmetry under interchange of x, y and z we have also

∂2f

∂y2
= −n

1
rn+2

+ n(n + 2)
y2

rn+4
,

∂2f

∂z2
= −n

1
rn+2

+ n(n + 2)
z2

rn+4
.

Adding these second order derivatives yields the Laplacian:

∇2f = − 3n

rn+2
+ n(n + 2)

x2 + y2 + z2

rn+4
=

n(n− 1)
rn+2

.

End Quiz
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Solution to Quiz:
The Laplacian of the vector field F = x3yi + ln(z)j + ln(xy)k is a
vector ∇2F whose i , j components are correspondingly

∇2(x3y) =
∂2

∂x2
(x3y) +

∂2

∂y2
(x3y) +

∂2

∂z2
(x3y) = 6xy ,

∇2(ln(z)) =
∂2

∂z2
(ln(z)) =

∂

∂z

(
1
z

)
= − 1

z2
,

while the k component is

∇2(ln(xy)) = ∇2(ln(x) + ln(y)) = − 1
x2
− 1

y2
= −x2 + y2

x2y2
.

So the Laplacian of F is:

∇2F = 6xyi− 1
z2

j − x2 + y2

x2y2
k .

End Quiz
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Solution to Quiz:
The Laplacian of the vector field F = 3x2zi− sin(πy)j + ln(2x3)k is
a vector ∇2F whose i , j and k components are correspondingly

∇2
(
3x2z

)
=

∂2

∂x2
(3x2z) +

∂2

∂y2
(3x2z) +

∂2

∂z2
(3x2z) = 6z ,

∇2 (− sin(πy)) = − ∂2

∂y2
(sin(πy)) = − ∂

∂y
(π cos(πy)) = π2 sin(πy) ,

∇2
(
ln(2x3)

)
=

∂2

∂x2
(ln(2x3)) =

∂2

∂x2
(ln(2) + 3 ln(x))) = −3

1
x2

,

Therefore the Laplacian of F is

∇2F = 6zi + π2 sin(πy)j − 3
1
x2

k ,

and evaluating it at the point (1,−2, 1) we get

∇2F = 6i + π2 sin(−2π)j − 3k = 6i− 3k .

End Quiz
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Solution to Quiz:
The Laplacian of F = ln(y)i+z2j−sin(2πx)k at (1, 1, π) is the vector
whose i, j and k components are in turn given by:

∇2 ln(y) =
∂2 ln(y)

∂x2
+

∂2 ln(y)
∂y2

+
∂2 ln(y)

∂z2
= 0− 1

y2
+ 0 ,

∇2z2 =
∂2z2

∂x2
+

∂2z2

∂y2
+

∂2z2

∂z2
= 0 + 0 + 2 ,

∇2 sin(2πx) =
∂2 sin(2πx)

∂x2
+

∂2 sin(2πx)
∂y2

+
∂2 sin(2πx)

∂z2

= −4π2 sin(2πx) + 0 + 0 ,

Therefore we have

∇2F = − 1
y2

i + 2j − 4π2 sin(2πx)k

Since sin(2π) = 0, we find at (1, 1, π) that ∇2F = −i + 2j .
End Quiz
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